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In order to clarify the appropriateness of the proposal of Iguchi and Tilley, in which the force between two 
parallelcrystallographic shear (CS) planes at low separations is an attractive one and. at high separations. a 
repulsive one, the strain energy between (001) CS planes was calculated as a function of the separation. 
The strain energy was presumed to be due to the forces acting on cations in the CS planes and was 
calculated by using classical elasticity theory by way of the elastic Green’s function. The result obtained is 
in agreement with the original proposal but the CS plane separation at which the force between them 
changes from an attractive to a repulsive one is much larger than was estimated previously. The strain- 
energy curve has, in addition, a plateau where the interaction of the paired CS planes is likely to be in the 
metastable state. The difference between other related results and ours is discussed in terms of the 
difference of the model employed. 

Introduction 

It has been established for several years that 
reduction of WO, crystals to compositions 
down to approximately WO,.,, at tem- 
peratures over about 1000°K results in the 
formation of the crystallographic shear (CS) 
planes in the matrix of the parent oxides (1-9). 
In addition, when reduction is achieved by 
reaction with certain lower-valent metals, 
notably Ti, Nb, Ta or MO, CS planes are also 
formed (Z&13). 

Thus a great deal of precise information on 
the crystal chemistry of these CS structures is 
available, but quantitative analyses of these 
phenomena on the basis of solid state physics 
were started only a few years ago (14-17). To 
this end, it is necessary to consider all of the 
factors which contribute to the free energy of a 
crystal containing CS planes. As a CS plane is 
one of the extended planar defects, the strain 
energy of the ions in the matrix due to CS 
planes must be one of the most important 
terms in free energy, as Anderson suggested 

(28). Stoneham and Durham (14) and Iguchi 
and Tilley (2.5) calculated parts of this term 
and the results of the latter were in fairly good 
agreement with the experimental results. 
Iguchi and Tilley evaluated the strain energy 
of the matrix between two parallel CS planes, 
which is denoted (Us)*, and found that the 
calculated strain energy increases as the 
increase in the separation between CS planes, 
although the curve is not a smooth one but 
consists of a series of peaks and valleys when 
two CS planes are close except in the case of 
the { 00 1 } CS planes. They also evaluated the 
strain energy of the matrix due to an isolated 
CS plane, denoted 2(U,),, where (U,), indic- 
ates the strain energy in the matrix of the right- 
or left-hand side of the isolated CS plane, and 
found that 2(U,), is smaller in value than (U,), 
of the paired CS planes at high separations. 
Referring to this result, they proposed that the 
(IV,), curve should pass through a maximum 
value and, then, it should fall to 2(U,), as the 
CS separation increases to infinity; that is, this 
behavior may be considered to give rise to a 
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FIG. 1. Idealized representation of a pair of (001 I CS planes. The n value of this pair is 5. The shaded squares 
represent (WO,) octahedra. The crystal axes, a and c axes, are indicated. 

virtual attractive force between CS planes at 
low separations, and to a virtual repulsive one 
between them at high separations. However, 
they could not justify their proposal com- 
pletely because their calculations were not, in 
the main, taken far enough. 

In this report, we show that this suggestion 
is justified by computing (U,), as a function of 
CS plane separation for (001) CS pairs, the 
calculation of which is expected to be the 
simplest one. 

Theory 

The cubic form of WO, with ReO, (DO,) 
structure is, in a strict sense, never achieved in 
the W-O binary system (I9-22), but we 
approximate the crystal structure of WO, to 
this idealized ReO,-type cubic structure in the 
present theoretical treatment. In this report, we 
calculate the strain energy of the matrix 
between two parallel {OOl} CS’ planes which 
are introduced into a perfect large single WO, 

’ Throughout this paper, the indices of CS planes and 
crystal planes will be referred to the idealized cubic WO, 
cell of the DO, (ReO,) type. 

crystal, as shown in Fig. 1, and also the strain 
energy due to an isolated (00 11 CS plane. 

Although the distribution of ions in CS 
planes differs from that in the idealized crystal, 
the separation between anions is the same in 
both of them. However, the spacing between 
cations in CS planes reduces to about 7 1% of 
that in the idealized structure. So, a strong 
central repulsive force between cations in CS 
planes can be expected. Then, in calculating 
the strain energy, we have hypothesized the 
forces, f, between cations in CS planes as 
shown in Fig. 2 by a method similar to that in 
our previous work (15, 17). The appropriate- 
ness of this hypothesis is justified by the result 
of De Angelis and Schiavello (23) obtained by 
the method of X-ray photoelectron spectto- 
scopy. In addition, Iguchi (17) estimated the 
magnitude off to be -7.8 (eVIA3) = 1.25 x 

lo-isJ . nmw3 by quantifying the displacements 
of nonparallel { 102) CS planes in reduced 
WO, obtained by electron microscopy with 
the theory of elasticity for an isotropic 
continuum. 

In order to calculate the strain energy in this 
report, we have also assumed that the crystal 
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(001) CS Plane 

FIG. 2. The direction of the forces assumed to be 
present within a (001) CS plane and which result in 
elastic strain energy of the surrounding matrix. 

can be treated as an isotropic continuum 
except in the region of CS planes which are 
considered as containing discrete ions. Accord- 
ing to Hirth and Lothe (24), when a point 
force, F, is applied to the initial point, the dis- 
placement of the point which is located at r 
from the initial point, II, is represented by 

u =G-F, (1) 

where G is the elastic Green’s function, the ijth 
component of which has the form 

I+p a2r 
&V*r- -- 

1 + 2~ axi axj ) 
. (2) 

As the ReO,-type crystal has cubic symmetry, 
we have the following relation among L (the 
Lame constant), Jo (the shear modulus), and 
the elastic constants C,,, C,*, Cd4, 

,u = c,, = (Cl, - c,,n 
I = c,, (3) 

Using this theory, we can have the Zth 
component of the displacement of the Zth ion 
due to a force which is acting onjth cation in a 
CS plane, ‘(u~)~. Then, if the Zth ion is in the 
matrix between two parallel (001) CS planes, 
1 and 2, the displacement of this ion along the 
lth direction, ‘u,, can be expressed, as 
described in our previous paper (1.Q by 

‘UI= fr (‘U,)j + ;. (‘U{)jT, (4) 
j i 

where zj means the summation of the Ith 
component of the displacement due to all 
cations in CS plane 1 and Tj, means a similar 
summation over all cations in CS plane 2. On 
the other hand, the klth component of the 
strain, ek,, is related to the component of the 
displacements by the equation 

ek, = (auk/ax, + au,lax,)/2 (5) 

Referring to Eqs. (4) and (5), the klth 
component of the strain of the Zth ion, ‘ekl, is 
given by 

‘e,, = t <‘eJj + ,f <‘e& (6) 
i j’ 

where (‘ekl), indicates the klth component of 
the strain of the Zth ion due to thejth cation in 
CS plane 1 and (‘e,Jj, has a similar meaning. 
Then we can obtain the strain energy density 
of the Zth ion, w,, by substituting Eq. (6) into 
Eq. (7): 

WI = (A + 2/l) 
( 1 

2 Ieii 2/2 
i=l 

+ p i (‘eij)’ -  i (’ 

[  

i,.i= 1 
i ,i=, eii) (‘eii) ’ C7) 1 

where i f, j. 

When an isolated CS plane is introduced 
into a single WO, crystal, the displacement 
and the strain of the Zth ion are given by 

'e,, = t C'ekJj. 

.i 
(8b) 

The strain energy of the Zth ion due to an 
isolated CS plane can be obtained in a similar 
way. 

Calculation and Results 

We must calculate the strain energy of each 
ion in the matrix due to the CS planes. In this 
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FIG. 3. The array of WO, octahedra which bridges the centers of the CS planes, I and 2. The n value of this array is 
IO. 

calculation, we have used the same ratios of 
the elastic constants C,,, CL2, and C,, as 
Stoneham and Durham (14), i.e., 

C,,:C,,:C,,= 16:7:5. 

In order to evaluate the values of Eq. (6) or 
Eq. (8b), the strain of each ion in the matrix 
should ideally be the summation of the strains 
due to all cations in the CS planes, but this is 
clearly impractical. So, we have approximated 
a block of CS planes which has a length of 85~ 
in the (100) crystal direction and a height of 
41~ in (010) as a (0011 CS plane, where a is 
the unit cell edge of the idealized cubic WO,, 
equal to the octahedron diagonal length. We 
can rely upon this approximation because of 
the following check. We have calculated the 
strain energy of the nearest W ion to the center 
of a block of 87~ x 43a due to this block and 
have compared it with the equivalent value due 
to a block of 85a x 41~. It is found that the 
absolute ratio of the difference between these 
values to the strain energy due to a block of 
85~ x 41~ is less than 0.05. 

Then, we have computed the strain energy 
of an array of WO, octahedra which combines 
the centers of the parallel blocks of CS planes, 
1 and 2, as shown in Fig. 3 as a function of the 

II value which is proportional to the separation 
between CS planes. To do this, we have 
calculated the strain energies of W ions in this 
array, SEW, the strain energies of 0 ions in 
the mirror plane (z = 0.0) of this array, SEO, 
and the strain energies of 0 ions in the plane of 
z = fa/2 in this array, SEU, by using Eq. (6). 
For example, SEW is evaluated as follows 

n-2 

SEW = 1 (w,Jp (9) 
i=l 

where (wJi is the strain energy of the W ion 
which is the center of the ith octahedron in this 
array which has (n - 2) WO, octahedra when 
the separation between the parallel (001) CS 
planes is expressed as n. 

According to our previous report (15), we 
reduce the strain energy of this array to the 
value per unit area of CS planes, which is 
denoted as (U&, as 

(Us)* = (47r/3a2)lr$ x SEW + r: x 

(SE0 + SEU)l (10) 

where rw and r. are the ionic radii of O*- and 
W6+ ions and the following values were used 
(25), 

rw =0.60 A 
ro= 1.40A. 
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FIG. 4. The elastic strain energy for a single (001) CS plane in an idealized WO, matrix, (a*/C) xi=, SE(N), as a 
function of I, where SE(N) = [SEO(N) + SEU(N) + (rw/r,)’ SEW(N)] and C = (1 + 2~) (f/8~~)*(47rr~/3). The 
broken line represents the extrapolated values as I becomes large. 

Moreover, we have calculated the strain 
energy of the matrix due to an isolated (001) 
CS plane per unit area of the CS plane, 
2(U,),. By a method similar to the cal- 
culation in the CS pair, we have computed the 
strain energy of an array of WO, octahedra 
which extends to infinity from the center of the 
block of 85a x 41a, perpendicular to this 
block. We denote the strain energy of the W 
ion in the Nth octahedron as SEW(N) and the 
strain energies of the 0 ions in the mirror 
plane (z = 0.0) and in the plane of z = ?a/2 of 
the Nth octahedron as SEO(N) and SEU(N), 
respectively: then 2(U,), can be represented 

by 

2(U,), = 2(41d3a2) f [l;: x SEW(N) + r; x 
N=l 

(SEO(N) + SEU(N))l. (11) 

In Fig. 4, the values of I;= i [SEO(N) + 
SEU(N) + (rw/ro)3 x SEW(N)1 have been 
plotted as a function of I. The extrapolated 
value of CL= i lSEO(N) + SEU(N) + 
(rw/rJ3 x SEW(N)1 at Z = cc is proportional ,--. 

In Fig. 5, we have shown the relation of 
(V,), and n and we have plotted 2(U,),, 
which is extrapolated in Fig. 4, as (U,), at n = 
co, because the strain energy in the matrix 
between the two CS planes which are 
separated infinitely is to be 2(U,),. In Figs. 4 
and 5, the vertical axes are represented in units 
of C/a*, where C =(A + 2~)(f/8rr~)*(4mc,‘/3). 
In our previous paper (15) we calculated 
( V,), and (V,), of (00 1 } CS planes in a 
similar fashion, but the array of WO, oc- 
tahedra was not normal to the block of CS 
planes. Therefore, the values of (U,), and 
(V,), obtained earlier differ slightly from the 
values in this report. 

Discussion 

A. Thermodynamics 

According to Tilley (26), the free energy of 
reduced crystal WO,-,(c, CS) containing CS 
planes can be expressed as 

In this equation, Go is the free energy of the 
original (perfect) WO, crystal before reduction 
and which contains N tunasten ions. G, is the 
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FIG. 5. The elastic strain energy between two parallel 
(0011 CS planes, (a2/C)(UJ2, plotted as a function of the 
number of octahedra, n, between them. The extrapolated 
curve at n > 76 is plotted by a broken line. The plot at 
n = cc is the extrapolated value of (a2/C) lk=, SE(N) at 
I = co in Fig. 4. 

free energy of the N&S planes introduced as a 
result of the reduction, and G, is a free-energy 
contribution resulting from all the interactions 
between the CS planes and their surroundings. 
So the strain energy calculated above belongs 
to Gi. 

The model employed in this work is the 
same model as that described in our previous 
papers (IS, 17). Thus, the free-energy change 
due to a CS plane introduced into a perfect 
crystal, AG,, can be given by the equation 

AC, = (U,) + (Use,J + Y + WJ, + 2(uJ,. 
(13) 

The formation of CS planes needs the dis- 
sociation of oxygen atoms from the crystal 
and we denote the change in the free energy 
associated with this reaction as (V,). The term 

(Uself) represents the elastic strain energy of 
the CS plane, itself. So, (U,,,r) is considered to 
be the eigenvalue of the CS plane in our 
model. As described in the Introduction, 
2(U,), is the strain energy in the matrix due 
to the isolated CS plane and 2(U,), is the 
electrostatic interaction energy among the ions 
in the CS plane and surrounding ions. The 
term y is the interface energy between a CS 
plane and the surrounding matrix, which 
occurs in Eq. (13) because the difference in 
physical and chemical properties between the 
CS regions and the matrix is expected. 

In the similar way, we can express the free- 
energy change due to a pair of CS planes 
introduced into a perfect crystal, AC,, as 

4 = W,) + ‘W’,,,,) + 2~ + WJ, + (Us), 
+ WJ,+ w,>, + W,,,), (14) 

where (U,), is the electrostatic interaction 
energy among the ions in the CS planes and 
the ions in the matrix between the CS pair, and 
(U,,,) represents the repulsive coulomb energy 
between the CS planes. 

Therefore, (U,) and ( Uself) belong to G,, and 
other terms in Eqs. (13) and (14) belong to G,. 
Unfortunately, to date we do not have any 
information relating to the electronic states in 
the CS planes from either experiment or 
theory, so we have assumed the CS planes to 
be neutral. If the CS planes are neutral, Eq. 
(14) can be expressed approximately as 
follows 

AG, E 2(U,) + 2(U,,,,) + 27 + 2(U,), + (Us),. 
(14’) 

Among these terms, only (Us), varies with the 
separation between the CS planes, and the 
others are constant terms. Therefore, we can 
see the relation of AG, and the spacing 
between the CS pair by plotting (UJz as a 
function of n. 

B. Interaction between Two Parallel (001) 
CS Planes 

As described above, the curve in Fig. 5 is 
considered to represent the relation of AG, and 
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n. According to this result, AG, decreases as n 
increases from 3 to 4 and in the region of n = 
4 to 18, AG, increases smoothly as n increases. 
This curve has a plateau between n = 19 and 
25, but AC, increases very slightly in this 
region except at n = 22, where AG, has a 

0.t 

minimum which is not obvious in Fig. 5. Then, 
AG, increases again as IZ increases from 26 to 
63, after which AG, decreases smoothly to the 
value of 2(U,), as n increases. This behavior 
shows that there is an attractive force between 
two parallel (001) CS planes in the region of 
n = 4 to 63 except at n = 22 and the force 
between the CS pair is a repulsive one when n 
is over 64. Thus, the force of the CS pair 
varies with its distance in a fashion similar to 
that between two edge dislocations of the same 
sign (27). However, it is not certain whether 
the energy changes involved would be 
sufficient to cause the CS planes to move in a 
crystal, as the ionic mobility necessary is 
dependent on a large number of factors. In the 
plateau, these two CS planes are in a meta- FIG. 6. The forces between two parallel (001) kS 

stable state. planes as a function of the n value. The force is plotted in 

In Fig. 6, we have shown the force between arbitrary unit’. 
the CS planes as a function of n, which is SE/C’ 

obtained approximately as follows 0.10 
F 

UL. CC -@W4, = ni 

rz ~[AG,(n,) - AG,(n, + l)l/ln, - (ni + 1)l 
= AG,(n,)- AG,(n, + l), (15) 

/’ 
/*-------SE0 

/’ 
/’ 

where (F),=,, and AG,(n,) represent the force 
and the free-energy change between the two 
CS planes at II = n,. 

__----- -- -. -sEW 

As seen in Figs. 5 and 6, two parallel { 001 } 
CS planes at low separations attract each 
other strongly and especially in the region of 
n = 4 to 18, these CS planes tend to be as 

o,o5+L 
SEU 

close as possible. However, at very small 
- I 

separations, they repel each other (see the 
: 

(V,), curve at n = 3 and 4). 
. I 

I 
I 

In order to understand the reason why the _ $1 ‘I 
curve of AG, vs n has such a plateau, we have 
shown SEW, SEO, and SEU in Eq. (10) as a “““0 a 5-R 

20 40 60 60 

function of n in Fig. 7. It is found that the 
curve of SEU vs n has two peaks, at n = 15 

FIG. 7. The relations of SEW, SEO, and SEU vs n. 
Th e values, SE, of SEW, SEO, and SEU arc plotted in 

and 63, and one minimum, at n = 28, and the units of SE/C’, where C’ = (A + 2p)()(f/8~). 
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increasing rate of SE0 decreases in the region 
of n = 20 to 26. Referring to these results, the 
curve of AG, vs n seems very sensitive to the 
curves of SEU and SEO, which are considered 
to give rise the plateau. In a previous report by 
Iguchi and Tilley (Z5), the strain energy, (V,),, 
between two parallel { 102) CS planes in the 
region of n = 6 to 34 was calculated in a 
similar way and it was found that (Us), has a 
peak at n = 33. So, they anticipated that (Us), 
would decrease as n increased beyond 34 in 
this system. However, the result in this report 
indicates that this conclusion may be slightly 
wrong, and the decrease in (Us), associated 
with the increase in n from 33 to 34 may be 
that corresponding to the minimum of the 
curve in Fig. 5. According to the Iguchi-Tilley 
calculation on the {OOl } CS pair between n = 
3 to 17, the (Us), curve is quite similar to the 
result in this report and nearly flat at 12 N 17. 
So, they estimated that the maximum point of 
the (V,), curve would be close to n = 17, but 
this is also wrong. The CS plane separations at 
which the maximum points of (Us), take place 
are much larger than they expected. 

Not only in the Nb-W-O (12) and the Ti- 
W-O (13) ternary systems, but also in the 
niobium oxide fluorides (ReO,-type crystals), 
when beam heated in the electron microscope 
(6, 28-31), { 0011 CS planes are formed. In 
the Nb-W-O and Ti-W-O systems, quasi- 
ordered or ordered arrays of { 0011 CS planes 
are formed, but in the niobium oxide fluorides, 
pairs of {OOl ) CS planes are observed. A 
careful statistical survey of experimental 
results equivalent to that for the { 1031 CS 
planes shown in the previous work (IS) would 
be very helpful for a discussion of the 
correlation between the calculations in this 
report and the experimental results. 

The results in this report suggest that, 
except in the case of the quite small con- 
centration of { 001) CS planes, they would tend 
to cluster in pairs or in groups. Besides the 
strain energy, however, there still remain other 
factors which would contribute to the inter- 
action between CS planes-for example, the 

lattice polarization, the lattice relaxation, and 
so on-but the theoretical treatments for these 
terms are not yet established, so they will be 
postponed to the future. 

C. Comparison with the Result of Stoneham 
and Durham 

Stoneham and Durham (14) also in- 
vestigated the interaction between the parallel 
{ 001 } CS planes, but their result is quite 
different from ours. This difference is ascribed 
to the difference between their model and ours. 
They, using the Fourier space, calculated the 
strain energy of each ion in one CS plane 
which was obtained by the scalar product of 
the force acting on the ion with the displace- 
ment of that ion induced by all the ions in the 
other CS plane, and they defined the strain 
energy between the two CS planes as the 
summation of the strain energies of all ions in 
the CS planes. So, in their model, the matrix 
between the CS planes plays the role of the 
medium which transmits the force from one 
CS plane to the other and the regions of the 
CS planes are considered to be the isotropic 
continua as well as the matrix. The strain 
energy obtained by them is, therefore, the one 
due to the CS plane itself, which is considered 
to belong to (Us,& in this report. On the other 
hand, in our model, the region of the CS plane 
is not a continuum and the value of (Us,,,) is 
free from surrounding CS planes. 

At present, it is impossible to say which 
strain energy is more important. It is to be the 
subject of a further publication to clarify this 
point. 
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